Inspiring the scientists of tomorrow with fascinating experiments

Sixty children were looking in awe at those ten weird persons, dressed in white robes and strange glasses: Were these aliens invading their kindergarten Auf dem Backenberg (Bochum) on that morning of the 11th of October? The reality, they were about to discover, was more down to Earth than that, but fascinating nonetheless.


The JCF Bochum at work ©JCFBochum2016

We, the men and women in white, were chemists of the JungChemikerForum Bochum – the 1998 founded local group of young members of the GDCh. And we had brought several intriguing chemical experiments that encouraged them to participate and solve some of nature’s mysteries.

Why don’t water and oil get along?

Ranging from only two-year-olds up to fourth graders, our audience was very mixed. Still, fascination unified them from the very beginning. In their first experiment they had to mix water with oil – but wait, they don’t want to mix?!? That result was quite unexpected for most of our little experimentalists, but we soon explained:


Water and else ©JCFBochum2016

The difference in polarities and intermolecular forces between water and oil makes them like cats and dogs – they form small groups of one kind, but simply don’t get along with each other because of their differences. But what if we take a drop of ink and let it fall into the mixture (of course after multiple attempts with these tricky pipettes)? Ink seems to prefer the company of the polar water molecules, making for a nice visualization of the underlying principles of solute-solvent interactions.

Is brushing your teeth really necessary?

The little explorers then switched to the next experiment: We had to convince them that brushing your teeth in the morning and evening wasn’t just a huge waste of time – a challenge indeed! As model for their teeth a hard-boiled egg was chosen that first had to be properly coated on one half with tooth paste. The children performed this task with vigor and enthusiasm (though maybe not as diligently as we had expected, so we cheated by secretly coating the eggs some more).


Brush the egg ©JCFBochum2016

Next, the egg was lowered into a glass full of vinegar, symbolizing everyday’s assortment of acids passing our teeth. Also the young participants understood the aggressive properties of this vile liquid after putting their noses over the glass as could be told from the grimaces they made. Having put the egg into the vinegar they observed that bubbles were only formed on the uncoated side of the egg. This being probably the first time these children had ever consciously perceived a chemical reaction our JCF instructors very slowly explained: They carefully introduced the concepts of acids and bases to them, how the stuff that had attacked their noses earlier would react with the egg shell (i. e. calcium carbonate, see below) and produce carbon dioxide, the same gas they knew from soda or lemonade.

2 CH3COOH + CaCO3 –> CO2 + H2O + Ca(CH3COO)2
Acetic acid + Calcium carbonate –> Carbon dioxide + Water + Calcium acetate

However, how come the side they had coated with tooth paste earlier did not show any bubbles? This, we explained, was because the tooth paste contained fluoride, a special ion that helps to prevent damage to teeth by reacting with the hydroxylapatite contained therein and making them more acid-resistant:

Ca5(PO4)3(OH) + F– –> Ca5(PO4)3F + OH
Hydroxylapatite + Fluoride –> Fluorapatite + Hydroxyde

What magical substance surrounds us all?


Chemical tools ©JCFBochum2016

Finally, the children arrived at their last experimental setup, the sight of gummy bears having magically attracted them there. But before they could find out what to do with the sweets (and possibly how they tasted) they had to perform a deceptively easy experiment by submerging an empty glass upside down in a bowl of water. When asked to get out the glass and feel the bottom of it surprise crossed their faces: How could it be that the inside stayed dry? There had been nothing in the glass to prevent water from coming in… or had there been? Could it be that something surrounds all of us at any given time and thus is also inside seemingly empty glasses? When asked these questions the children got thinking: “Nothing”, some children pouted, “the environment” was another cute attempt at solving this riddle. “The sun” was actually an answer that showed quite a lot of insight since light is of course an entirely valid answer.

After some coaxing and hinting the small researchers indeed arrived at air as the substance we were searching for, but as true scientists were very skeptic about it. An invisible substance that is everywhere? We clearly had to visualize this mystical air to convince them. So we let them produce some bubbles by slightly tilting the submerged glass and thus see the otherwise invisible air. As crowning experiment we asked the children to let two gummy bears inside a small boat (made from aluminum foil) take a dive to the bottom of the water bowl without letting them get wet! The kindergartners soon figured out that they could use the same protective hull of air inside the glass to achieve this task and received some sweets for their accomplishment.

We were very delighted by the children’s remarkable enthusiasm to experiment and eagerness to learn about nature’s secrets. Although they probably did not realize it, they had experienced some of the fundamental principles of Solvation Science: The interactions of and interfaces between hydrophilic and hydrophobic solvents (water and oil), the preference of a polar molecule (ink) for water as polar solvent, acid-base reactions in aqueous media (egg shell plus vinegar), water as “tool” in experiments to probe and visualize certain effects (air bubbles). Besides teaching the children these important principles from physics and chemistry, another goal was to inform about them the puzzling work of chemists. Most of them had never even heard of us before and found our alien coats and safety-glasses very interesting. All in all, a very fascinating and instructive day for these small explorers!

This event has been organized in cooperation with the Young Spirits program of Evonik. Please contact us if you are also interested in teaching science to children, so we can supply you with contact to Evonik’s Young Spirits program or the actual procedures of the experiments described in this blog entry.

About the authors
dsc00024_aTim Schleif is a PhD student in the group of Prof. Sander working on matrix isolation experiments at the Ruhr-University Bochum since 2015. He is also the speaker of the JungChemikerForum Bochum that organizes talks and excursions for the students of the faculty.



Christoph Schran is a PhDstudent in the group of Prof. Marx working on nuclear quantum effects at the Ruhr-Univeristy Bochum since 2016. As an active member of the JungChemikerForum Bochum, he organized the event at the kindergarten.

Itinerant solvation science exhibition ‘Völlig losgelöst’ hits the road in Recklinghausen


Cable car in the museum ‘Strom & Leben’ © Lutz Tomala

There’s a cable car parked in the middle of a room, and a wall covered with radios. Switches, electricity generators and coils? There are so many of them that one expects Nikola Tesla to appear every second. Then, nearby a generator, there’s a table with colored chemical solutions. And in another room appear huge modules, similar to oversized overnight bags wide-open, portraying persons in space suits and explaining about chemistry in solution. Such a striking combination of physics and chemistry got the visitors’ attention at the museum ‘Strom & Leben’ in Recklinghausen on the 6th of November. It was the inauguration day of the Solvation Science exhibition ‘Völlig losgelöst’, taking a first detour since its launch in the Blue Square in Bochum at the beginning of 2016.


Chemistry and physics © Lutz Tomala

“It’s wonderful news that this itinerant exhibition has finally hit the road. Scientific research is an exploratory expedition in the unknown, but the trip itself should not remain undisclosed to the public”, said at the opening Katrin Sommer, Professor for „Didaktik der Chemie” at RUB and one of the designers of the exhibition.

But what do solvation science and electricity have in common?  As the museum’s director Hanswalter Dobbelmann pointed out, “there is indeed a strong historic connection between chemistry and electricity. For example, the discovery of electricity dates back to the first attempts with chemical batteries made by Volta and Galvani.” But the links between chemistry and electricity are not only a thing of the past: “Solvation science is much important for current topics like energy storage”, said Prof. Dr. Havenith, speaker of the Cluster of Excellence RESOLV, “therefore, we currently witness increasing research on solvents used in energy storage media, with the aim to improve their efficiency as well as their safety”.


The exhibition is open, the journey begins © Lutz Tomala

Under these premises, ‘Völlig losgelöst’ will occupy a well-deserved spot in the ‘Strom & Leben’ museum in Rechklinghausen until Spring 2017. Besides presenting the actors and the themes of the RESOLV cluster, the exhibition will offer visitors the possibility to perform small experiments related to solvation science. School classes from the 3rd to the 5th year have also the possibility to book a special experimental program and to dive for two hours into the world of solvents. In the end, as Dobbelmann, Havenith and Sommer hope, by showing the scientists’ journey through a new research expedition, ‘Völlig losgelöst’ might well electrify the young generations to hit the same road in the future.

About the Author

EF3Emiliano Feresin is a science journalist, currently responsible for the outreach activities within the RESOLV cluster at RUB. Born and raised in Italy, he holds a Diploma and a PhD degree in chemistry. Driven by an innate curiosity for scientific stories, he completed his education with a master degree in science communication. Along the path he has written for outlets like Nature and Chemistry World and learned that the reader has always the last word.

Embedding nanoparticles into porous materials for greener chemistry.

Chemical and pharmaceutical industries are constantly seeking new ways towards sustainable chemistry that allows for less waste production and reduced energy consumption during industrial processes. One way, which I investigated in my PhD research, would be to use nanoparticles to speed up chemical reactions – a process called catalysis.

Nanoparticles are tiny objects or combinations of several atoms that can be as small as 1 nm and show unique properties, different from the bulk material. Take gold, for example. We are used to its shapes and colors in jewelry, but gold nanoparticles show completely new properties, such as red color in solution or the ability to behave as a catalyst in an efficient and selective manner. Similarly, nanoparticles of Platinum (Pt) and Palladium (Pd) can also act as catalysts in various processes (i.e. hydrogenation, the reduction of organic compounds). Nanoparticles promise to be highly selective, to greatly increase the reaction rate and to lower energy consumption. However, one major disadvantage of nanoparticles is the tendency for aggregation and thus the loss of their unique catalytic properties.

MOFs support nanoparticles for catalysis

In my PhD, I successfully encapsulated catalytically active metal nanoparticles of Pt or a combination of Pt/Pd into stabilising support materials called metal-organic frameworks (MOFs), which prevent aggregation. Inside MOFs, the tiny metal particles could maintain their unique capacity to hydrogenate nitrobenzene-based compounds and additionally be very selective towards the target products. Moreover, I could show that the combination of bimetallic nanoparticles of Pt and Pd with MOFs can surpass the catalytic hydrogenation activity of the monometallic Pt nanoparticles. This alternative solution may help to reduce the costs for the use of noble metals, replacing parts of the expensive Pt by Pd.

Especially in view to catalysis, MOFs exhibit two beneficial properties: Storage capacity (sponge-like property) and molecular selectivity (sieve-like) – in fact, due to the unique microporous structure of the support, the embedded nanoparticles are only accessible by molecules that fit the dimensions of the MOF pores (see Figure 1). MOFs are porous materials, formed by interconnection of organic linker molecules and metal ions or clusters. Thereby, a three dimensional network with a huge inner surface area is formed, which simultaneously possesses enough space to accommodate small sized nanoparticles or other guest molecules and solvents (water, nitrogen, carbon dioxide). Hence, MOFs feature the ability to absorb and/or separate a certain amount of substances at the molecular level, very similar to sponges or sieves.


Figure 1. Top: Schematic representation of encapsulated nanoparticles inside a MOF with shape-selective, catalytic properties. The smaller substrate A1 is able to infiltrate the framework and can be converted to the target product B at the embedded nanoparticles – the larger molecule A2 is instead unable to infiltrate the MOF. The MOF consists of metal clusters (blue tetrahedra) interconnected by organic linkers, building up a 3D structure, where metal nanoparticles are exclusively embedded. Bottom: hydrogenation of sterically different nitroarenes to the corresponding amines, where aniline is selectively produced (size selectivity).

In my work I choose the Zirconium-based metal organic framework named UiO-66, which appears in a 3-dimensional structures with tetrahedral and octahedral pore geometries. A major advantage of this particular MOF is its extraordinary high thermal and chemical stability against water, acids and several organic solvents. Therefore, UiO-66 represents an appropriate candidate for heterogeneous catalysis, while other MOFs would decompose during the applied catalytic conditions.

Low-cost bimetallic Pd/Pt into MOFs show promising catalytic activity

Following a template approach, we exclusively embedded preformed mono- and bimetallic Pt and Pd/Pt nanoparticles without undesired deposition at the outer surface of the porous material, which in fact represents the key feature for shape-selective catalysis. Then we elucidated the structural integrity of the material and the exact spatial distribution of the nanoparticles (fully embedded into the MOF crystals or not). For instance, powder x-ray diffraction (PXRD) measurements indicated the crystallinity of UiO-66, even after the encapsulation process; transmission electron microscopic (TEM) measurements showed the successful and exclusive encapsulation of the nanoparticles into the core of the MOF crystals.

Afterwards the materials were further studied for selective hydrogenation of nitrobenzene-based compounds to the respective anilines. Direct comparison of the embedded Pt and Pd/Pt NPs showed a much higher catalytic activity for the bimetallic species, while the shape-selective character, originating from the microporous MOF, was maintained. Hopefully, this may become another possible solution towards sustainable.

About the author:

picture2Christoph Rösler received his MSc in Inorganic Chemistry at RUB in 2012 – supervision of Prof. R. A. Fischer . During his Master thesis he visited the labs of Prof. H. Kitagawa at Kyoto University, designing metal nanoparticles, especially multiphase systems. Since 2013 he is a PhD student in the group of Prof. Fischer, tackling metal nanoparticle inclusion into metal-organic frameworks. He also investigated catalytic properties of NP@MOF composites at the the Instituto de Tecnología Química of Prof. A. Corma in Valencia.

Tinkering with solvent helps to regulate the crystallization behavior of amino acids

During my PhD research, I investigated the possibility to influence the crystallization behavior of glycine by means of crystallization experiments under ambient conditions. I could show that it is possible to control the crystal formation of glycine from aqueous solution by isotopic exchange (H/D-exchange) on the solvent or the addition of mineral powder.

Glycine, the smallest amino acid, can crystallize from aqueous solution in different stable solid forms that are called α and γ polymorphs. I could show, on a statistical basis, that glycine forms the γ polymorph from heavy water (D2O) solutions instead of the α form, which is known to crystallize from normal water (H2O). Additionally, my studies regarding the introduction of inorganic powdered material, like fluorapatite (Ca5[F(PO4)3]) or calcite (CaCO3), into the crystallization system, also lead to γ formation. That is, our studies showed that the H/D exchange as well as the introduction of inorganic surfaces to the crystallization system influence and even regulate the crystallization behavior of glycine immensely.

The scheme illustrates that either deuteration of the molecule (top) or the application of biominerals (bottom) can lead to crystallization of γ-glycine (right) instead of α-glycine (left) from solution.

As methods the experimental grazing-incidence X-Ray diffraction (GIXRD) investigations accompanied by force field simulations were carried out to describe the interface between the amino acid solution and the biomineral surface structure. The support by computational methods offered an insight into the molecular interaction level and thereby provided nice approaches to explain the observed phenomena.

The video shows force field based molecular dynamic simulations regarding the dissolution of an interacting glycine dimer in aqueous environment of H2O and D2O molecules. Further, it shows the crystallization of glycine from a water solution droplet on fluorapatite (100) surface and calcite (101) surface.

Link to the PhD thesis of Anna Kupka: “Untersuchungen zur Steuerung des Kristallisationsverhaltens von Aminosäuren in Lösung durch den Einsatz von Deuterium oder Biomineralien”

Link to Graduate School Solvation Science

About the Author

anna_kupkaDr. Anna Kupka has recently accomplished her PhD research in the department of Inorganic Chemistry I at Ruhr-University Bochum, as a stipend holder from Graduate School of Solvation Science, GSS, RESOLV. She has had research stays in various scientific institutions in Spain, Italy and France including her GSS internship in Spain, and has attended several conferences.

A theoretical study to unveil the working cycle of an elusive enzyme causing tissue diseases

Living far from my family makes me look forward to every meeting with them. And here I am, just arrived at the airport, everyone is looking at me, smiling and asking lots of questions, including a dreading one: “Ok, tell us what your work is about?” For me, as a theoretical chemist, this is a mission impossible! Should I bore them with equations and certain words, such as quantum mechanics, level of theory, potential energy surface? It’s hard to be general while speaking about such a specific topic, but I shall give it a try.

In one of my PhD projects I investigate the working cycle of an enzyme called MMP-2 (Matrix Metalloproteinase type 2), finding out the important role of an acidic residue of the enzyme and of the surrounding water.

MMP-2 is located in tissues of animals and humans. It regulates the proper protein composition of the extracellular matrix by cutting collagens (structural proteins of the tissues). At certain conditions MMP-2 may get too active doing its job, it will cut gelatin too fast and too intensely, causing inflammation processes, tumors, metastasis and similar illnesses.

A long-range aim is to find a way to control the activity of MMP-2, for example by designing a molecule (a drug), that would block the active site of the enzyme and stop the excessive degrading of gelatin. But before doing so we need to know in detail how the enzyme works: where the active site of the enzyme is and what rearrangements occur during the chemical reaction. Unfortunately, the experimental techniques cannot give exhaustive information on all the chemical steps, this is where theoretical chemistry comes into play.

The theoretical models we construct are based on experimental data, but we must always keep in mind the approximations we make and the limitations of the theory we use. Nevertheless, our models let us see atoms in molecules, atom movements during chemical reactions, and we can also estimate energy penalties for chemical processes.

Enzymes are big molecules, therefore they are treated by a special “divide and conquer” computational approach, called QM/MM (quantum mechanics/molecular mechanics). Our MMP-2 model system was divided into two parts: a small part, where a chemical reaction takes place, was treated by accurate but computationally expensive (quantum mechanics) methods; the rest (the environment) was treated by fast “balls on springs” approximation, called molecular mechanics. By using this trick we managed to perform accurate calculations on big biomolecules in a reasonable computing time.

The following video shows the four main steps of a chemical reaction in MMP-2: 1. a water molecule attacks the substrate (ES → TS1 → I1)1, 2. O-H group rotates (I1 → TS2 → I2), 3. a proton is transferred from an oxygen atom to nitrogen (I2 → TS3 → I3), 4. a bond between carbon and nitrogen breaks (I3 → TS4→ I4). We see that the acidic residue (which is a glutamic acid) plays a crucial role in the chemical reaction and that water molecules act as a reagent. By not letting water into the active site or by changing a substrate in a way that at least one step of a chemical reaction cannot proceed we can stop MMP-2 from working.

I have also modelled a product release step and found out that it may very likely be a rate limiting step of the whole process. In a similar fashion, I’ve studied a mutant of MMP-2 as well.

At the end I’d like to say that a valuable scientific discovery can be made only with the combination of theory, experiment and something as simple as a groundbreaking idea.

1 The abbreviations stand for ES: enzyme substrate complex, TS: transition state and I: intermediate.

Link to Max-Planck-Institut für Kohlenforschung

About the Author

Tatiana Vasilevskaya was born in Minsk, USSR. She obtained her Diploma in Chemistry at Lomonosov Moscow State University. Currently she works on her PhD thesis at MPI für Kohlenforschung at Mülheim an der Ruhr in the group of Prof. Walter Thiel.

The Host*: Developing new tools to engage next generations with science

The topics of scientific inquiry and nature of science are the major foci of our work in the Department of Mathematics and Science Education at Illinois Institute of Technology (IIT) in Chicago.


Sue, the largest, most complete Tyrannosaurus rex (85%) ever discovered, at Chicago’s Field Museum of Natural History © Shoffman11

For example, we worked on the High School Transformation Project (HSTP). HSTP was dedicated to changing the way science is taught at 23 Chicago high schools. We designed curricula in biology, chemistry, and physics that enhance foundational science knowledge, inquiry skills and knowledge, and nature of science through authentic and relevant learning experiences.

For example, in a class lesson designed to learn atomic structure, students had to follow various learning steps: Read the related book chapter; answer questions like “What are living things made up of?” and “What are elements made of?”; work hands on with true objects (in this case beans, peas and strings) to represent the atomic structure, and so on.

To ensure the success of the HSTP program, we provided each participating teacher with continuous and intensive support including on-site, expert, experienced instructional coaches, science faculty and graduate students. There were weekly networking meetings for all teachers. Scientists and educators from IIT and the Field Museum provided monthly professional development. Materials and activities were designed to specifically connect with each school’s diverse cultures and community interests.

Internship zone

I hosted Christian Strippel from the Chemistry Education group at Ruhr-University Bochum for his RESOLV internship in two stints: Fall 2014 and Spring 2016. During his first stay at Illinois Institute of Technology (IIT), we discussed preliminary ideas on the RESOLV exhibition and it was exciting to see how these ideas turned into the exhibition “Völlig losgelöst”. We also worked with Christian on a paper about research on teachers’ implementation of scientific inquiry in German Chemistry classrooms, which was recently published in the International Journal of Science Education.


Business dinner for young researchers at Peggy Notebart Nature Museum © Christian Strippel

Currently at IIT, we are conducting an international study on seventh grade students’ views about scientific inquiry. Science education researchers have been so far disappointed at what students learn about inquiry in schools, but this has been a feeling mainly based on perception. In fact, until recently, there has never been a comprehensive valid and reliable assessment of students’ understandings of inquiry. The Views About Scientific Inquiry (VASI) was developed at IIT and we are now working with researchers all over the world (i.e., 18 countries) to get a baseline assessment of what seventh grade students understand about inquiry. This will lead to a better idea of how we can engage the next generation with the practices and processes of science – be it as future scientists or as citizens in a global society influenced by science and research.

*The host is a new series of blog posts, revealing the perspective and the work of the scientist hosting RESOLV students for an internship.  

About the author


Norman G. Lederman is Distinguished Professor of Mathematics and Science Education at the Illinois Institute of Technology. He has a Ph.D. in Science Education from Syracuse University (1983); M.S. in Secondary Education from Bradley University (1977); M.S. in Biology from New York University (1973); B.S. in Biology from Bradley University (1971). He is internationally known for his work on students’ and teachers’ understandings of nature of science and scientific inquiry.

Ultrafast lasers will help us understand the matrix of life.


Clara Saraceno

Born in Argentina, university studies in France, an experience in the industry in the US and a PhD in Switzerland: The 32 year old physicist Clara Saraceno has literally followed her passion for lasers around the world. Since June, the 2015 Sofja Kovalevskaja Award winner (a prize of the The Alexander Von Humboldt Foundation) has started a W2 tenure track professorship at RUB. In RESOLV she will build the ultrafast lasers that Martina Havenith (speaker of the cluster) will use to investigate the role of water in biological processes. Similar to the lasers she works with, Saraceno is a powerful and resolute scientist. Her driving force, as she tells us in this interview, is fun.

Q: RESOLV is essentially about understanding how water works and why is water the matrix of life. Why exploit lasers in the THz field to study water?

Water shows extremely strong absorption in the THz regime, hence we can apply light sources in that field to investigate water dynamics. For example this could help us follow how water behaves around a protein while the molecule is functioning, making reactions and so on.

Q: How do you want to study water dynamics?

In general, the more short laser pulses you have per second the more information per second you get. Hence, to study fast dynamics we need lasers that deliver very short pulses at very high repetition rate, which means reaching high average power.

Q: How simple is that?

That’s exactly the ongoing challenge in ultrafast laser research! There are several ways to do this: You could pump the power by amplifying a regular ultrafast oscillator output or you can aim for simple compact source by trying to push the oscillator itself. I actually prefer the second option: I could reach an average 275 W power with 600 femtoseconds pulse duration and 17 MHz repetition rate in the near infrared range – a record that I actually achieved in 2012. My challenge here at RUB is to use these sources and convert them into high-power sources into the 1-10 THz range: We would like to reach an average power close to 1 W and a repetition rate bigger than 1 MHz.


The THz gap in the electromagnetic radiation spectrum © Martin Saraceno

Q: What are the main hurdles along the way and how can you overcome them?

Like for every high power, solid-state laser, we would need to minimize heat and maximize cooling, by choosing the right materials and the right geometry. The one geometry that I favor implies a gain medium, the main source of heat, shaped like a pancake. The disks that we use are just a few hundred microns thin, allowing for better dissipation of the heat and better-shaped short pulses.

Q: How do you cool down the discs?

The disks are actually glued on diamonds! They dissipate heat very well. We don’t use the pretty polished ones, just synthetic, but they are still expensive. The diamonds are then water-cooled.

Q: So much for hard science. What led you to work with lasers?

It was during my university studies on optics in France, there was this lecture on lasers technology. It was so cool! And then the school was offering an internship at Coherent, an American laser manufacturing company set in California. I thought: “Sunny California, for one year, lasers are cool, why not?”. But I applied too late.


Inside of a laser © Clara Saraceno

I contact them anyway after my master for an engineer trainee, and they got me. There I learned everything about lasers and I really got the ultrafast laser bug. It was real fun!

Q: How did it happen that you then went back to academia?

I soon found out that in the laser industry you need a PhD to make interesting things. So I was looking for an opportunity and it happened that my ex boyfriend was in Europe and that my cubicle-colleague at Coherent knew Prof. Ursula Keller at ETH in Zurich, Switzerland. He suggested I should apply there. They wanted me, and I really had a great time in Zurich, it’s a fantastic group!

Q: You’ve mentioned it already three times, what do you mean with fun?

I really enjoy manipulating stuff, go to lab and turn knobs. I love making nice devices and lasers. And I really marvel at the German way of making good functioning devices based on sound engineering.

Q: And now you are here at RUB?

Again there were coincidences. Martina Havenith once came to Zurich to give a talk. In her last slide she said “we need to increase the resolution, we need more powerful sources”. And my boss, Keller, goes “take Clara, she is looking for a job!”. So I applied for the Kovalevskaja prize and here I am.

Q: How was moving from the green, mountain-rich Switzerland to the concrete-rich Bochum?

Switzerland is super-nice, but with a family and a small baby, my priority was to move forward in science. I’m impressed by the scientific excellence that I’ve found here. I think there’s really room for good collaborations and for my own activity to grow. And the environment is a nice too! If I look at the right side I see green hills.

Q: Who do you see yourself collaborating with?

A natural collaboration would be with Janne Savolainen. He knows a lot about the right ways to generate THz light. And here I come, with some of the most powerful ultrafast lasers in the world!

2_schematic THz gen_water

Simplified scheme of the project idea: Disk (on diamond) generates near infrared pulse; conversion to THz pulse, which is used to study water molecules © Martin Saraceno

Q: What are your next steps at RUB? When will you do research on water?

First, we need to build up a lab, a good one. It will take around 6 months. Then I will start to tinker with laser to near the short pulses-high power in the THz domain. Soon, I would guess in some 18 month, we’ll do some experiments on water in parallel with the laser development.

Q: Becoming a professor at 32 is an outstanding achievement, especially for a woman, given the gender gap that still exists in science. What are your suggestions to young students and young women in science?

I always had so much fun with my work, so I would say: feel the passion! And don’t over think! If you see an opportunity give it a shot, what can you lose? Throw yourself in the pool, then things will work out.

Q: Clara, will we ever have the lightsabers of Star Wars?

Unfortunately laser swords make little sense physically. For the beam to suddenly ‘stop’ propagating, this would somehow imply that the laser beam is ‘trapped’ in a similar way to a resonator. However then, when something would intercept the beam the resonator would automatically stop, and the laser light would not be there anymore.

About the Author

EF3Emiliano Feresin is a science journalist, currently responsible for the outreach activities within the RESOLV cluster at RUB. Born and raised in Italy, he holds a Diploma and a PhD degree in chemistry. Driven by an innate curiosity for scientific stories, he completed his education with a master degree in science communication. Along the path he has written for outlets like Nature and Chemistry World and learned that the reader has always the last word.

Your odds of getting a job at Bayer HealthCare in Wuppertal

Bayer HealthCare Wuppertal

Excursion team to Bayer HealthCare Wuppertal

On the 20th of April 2016 RESOLV organized a captivating excursion to Bayer HealthCare in Wuppertal. It was a great opportunity for us PhD students to get insider information about the many career possibilities and research areas in Bayer.

The trip began from Bochum with a bus transfer to the Bayer HealthCare (BHC) research center in Wuppertal, where Mr. Larsen Schnadhorst from the Communication department and Ms. Angelika Behling from the Human Resources welcomed us. Ms. Behling introduced Bayer to us: About 2,600 employees work in the Wuppertal site and half of them are employed in research; the site covers an area of 18 hectars and its focus revolves around the topics cardiology and oncology.

Behling also told us about the philosophy of Bayer and briefed us about how to apply for and what to expect from Bayer. Here came some interesting information for a PhD student! For example she told us about PhD-workshops organized in cooperation with Germany and USA: To take part in these workshops you have to fill an application on their web-page – If you get accepted, Bayer will cover the costs. There are also special graduate programs including international trainee Programs for chemists, engineers or computational scientists. Getting a Post-Doc position is almost a bet, but in case of acceptance you would get a three-year contract with a follow-up contract being likely. Concerning direct job applications, two routes can be taken: 1) It is possible to start as a head of laboratory in R&D with one or two technicians. 2) You can start a career in a manager-position, rotating between different places every few years. Jobs like patent attorney or business consultor are also possible alternatives.

After this presentation the lab-station visits began. At the ophthalmology laboratory we were shown the structure of a human eye and what kind of things could happen with your eyes – e.g. the retina – when getting older. We could see damaged eye cells of rats under a microscope and how rats with induced eye diseases are examined in order to develop drugs that could possibly help humans in a later stage.

At the medicinal chemistry department we saw how drugs are synthesized and investigated. It was at the newly found catalysis department that we discover how professionals can also come across with some technical problems sometimes leading to high amounts of expenses or even the abortion of the project. However, given a second chance in many cases the problem is solved.

At the cardiology department we got to know about the manufacturing of drugs against thrombosis or hypertension. Researchers use mice or rats to test the effects of the drugs and we were shown how they conduct animal experiments and what equipment they use. From explanatory videos we could see how thrombosis can be induced mechanically in living but anesthetized mice and how special drugs can prevent it.

After our six hour excursion we were tired but happy that we got so much first-hand information about a pharmaceutical company. Now it was time to get back to the Ruhr-University Bochum.

About the Author

yesimmuratYesim Murat, born 1987 in Schwäbisch Gmünd, has studied Chemistry at the Karlsruhe Institute of Technology and obtained her diploma in 2012. Since 2013, she works as a PhD student in the field of Synthesis and Characterization of Ceria-Zirconia Catalysts for the liquid-phase Dimethyl Carbonate Synthesis at the Fraunhofer Institute UMSICHT in Oberhausen (Germany) in the Catalytic Processes group of Dr. Stefan Kaluza. Prof. Dr. Martin Muhler is supervising the thesis on behalf of the Department of Technical Chemistry at the Ruhr University of Bochum.


Interview with ZEMOS, the new “research baby” @ RUB.

Contemplating an innovative scientific building brings it to life.

ZEMOS main entrance © RUB, Marquard

ZEMOS main entrance © RUB, Marquard

The new research building ZEMOS at Ruhr-Universität Bochum has been inaugurated on Thursday, 19th May. It was a big event: VIPs were flooding in and giving speeches, TV journalists where recording, visitors were…well, just visiting. We, from the RESOLV office, sipped the delicious red wine that was served and tried something special, instead: We looked at ZEMOS, the 4000 m2, four-floor new home of Solvation Science, and asked for an interview. It was that easy.

Q: Good afternoon ZEMOS. Is that a mythological name?

A: I would be pleased to have a God name, but I’m proud of my German-based acronym: „Zentrum für Molekulare Spektroskopie und Simulation solvensgesteuerter Prozesse“ – ZEMOS

Q: Wow! Even if I understand a bit of German, that’s cryptic language to me!

A: First of all you have to understand that I’ll be the first worldwide centre hosting Solvation Science. It’s the study of how chemical substances dissolve, in water for example and how the solvent influences the chemicals. Then about my name: It basically means that scientists under my ehm…supervision, will use spectroscopy (technology based on light, for example lasers) and mathematical simulations to investigate how molecules influence solvation processes. But there will be much more going on here: organic and analytical chemistry, biophysics, microscopy, electro-chemistry etc.

Q: That’s better, thanks. How was it today?

Former RUB Rector Prof. Dr. Elmar Weiler and Minister Svenja Schulze

 meet at the ZEMOS main entrance © RUB, Marquard

A: Glad that you asked. I felt a bit…invaded. In my privacy, I mean. After two years of almost solitude, being taken care of, suddenly, someone opens my main entrance and – here they are, 200 people at once, journalists and the celebrities: Thomas Rachel, the Parliamentary State Secretary to the Federal Minister of Education and Research was here! And then Svenja Schulze, Minister for Innovation, Science and Research of the State of North Rhine Westphalia – I’m friends with her, she put my first stone two years ago. And then of course there was the former RUB Rector Prof. Dr. Elmar Weiler and my mom.

Q: Your mom?

A: Of course! Everybody has one, don’t you?

Q: Yes, but you’re a building…

A: Still, I have one: Prof. Dr. Martina Havenith! She conceived the idea of me in 2009, she fought for me through all the years and she was also here today, of course. She received a big key to celebrate my opening – that’s strange though, I’m a modern building, and I don’t even have keyholes! Human beings!

Parlamentarischer Stattssekretär Thomas Rachel, Prof. Dr. Martina Havenith-Newen mit Mnisterin Svenja Schulze und Gabriele Willems (Geschäftsführerin BLB)

Bei einer Veröffentlichung des Bildmaterials ist bitte als Bildnachweis: © RUB, Marquard zu nennen.

Holding the ZEMOS key, left to right: Parliamentary State Secretary Thomas Rachel, Prof. Dr. Martina Havenith, Minister Svenja Schulze and Gabriele Willems (Manager director at BLB)

 © RUB, Marquard

Q: So what did those VIPs say?

A: Oh, they were all very nice to me. Mr. Rachel said that I am an impressive symbol of the development of modern key technologies – by the way, he specifically called me “a baby”. Minister Schulze marvelled at the discoveries that I could lead to, for the benefit of environment, medicine, and industry. My…ehm… Mrs Havenith gave an emotional speech: She said that I’ll be the home of RESOLV and that I will become a place for innovative and unconventional scientific thinking. Thanks to my good-lookings, you know…

Q: Here we go again! You’re an inanimate construction; what do you mean with good-looking?


Transparent bridges and colours during the ZEMOS tour © Feresin

A: I seriously doubt you were here for the inauguration. Architecture and design, am I specific enough? For example, look at me from above: My ground plan describes an S shape, which is the first letter of spectroscopy, simulation and solvation, my main topics. I have two main entrances, which are fully coloured in red, yellow, green and blue, like in the rainbow. These are symbols for the wide spectrum of scientists that will work here. In the inside,


Bei einer Veröffentlichung des Bildmaterials ist bitte als Bildnachweis: © RUB, Marquard zu nennen.

Common “Combi” space inside an office area in ZEMOS. © RUB, Marquard

scientific areas are not closed or isolated, but transparent to the outside and connected through transparent bridges. In every office area there’s a common space for scientific discussions, relax and chatting in front of a cup of coffee. These are also symbols that there won’t be hierarchies here.


Q: I’m impressed. And what happened after the speeches?

A: There was a nice catering with food and drinks. I was very proud hearing all the laughters and the clinking glasses, watching all the amazed faces and the glittering eyes. Then my friends lead the guests into my chambers, for a visiting tour. People were fascinated and charming. I was flattered; I almost got red cheek…walls!

Q: So far for today. How will your ehm…life change from now on?

A: Well, I guess my lonely days are gone. I’m now becoming the home of Solvation Science at RUB. People are starting to move in – researchers that do simulation are already here. In short there will be around 100 scientists, from RUB but also from outside and even international scientists. They will bring large equipment, like microscopes that allow seeing molecules with atomic resolution, modern laser technology and spectrometers for microscopy in cells.

Q: Thank you ZEMOS, for your time and the small chat. I wish you a radiant future. You’re the most animated scientific construction I’ve ever met.

A pedestrian passes by, and frowns: Mit wem reden Sie denn da?

About the Author

EF3Emiliano Feresin is a science journalist, currently responsible for the outreach activities within the RESOLV cluster at RUB. Born and raised in Italy, he holds a Diploma and a PhD degree in chemistry. Driven by an innate curiosity for scientific stories, he completed his education with a master degree in science communication. Along the path he has written for outlets like Nature and Chemistry World and learned that the reader has always the last word.


America! Tropyl radicals, sports and campus life.

When I was first thinking about where to go for the GSS internship, I considered whether I should join a group that was using helium nanodroplet infrared spectroscopy, the same technique that we use in Bochum to study aggregates of small organic molecules with water. The alternative would have been to get an insight into a different experimental technique. Finally, I decided to increase my expertise in the setup I already knew, and I opted for a stay at the University of Georgia (UGA), Athens, Georgia, USA; in the group of Gary Douberly, from April to June 2015.

During the preparation period, Gary proposed a project: solvating the tropyl radical in helium droplets and measuring the infrared spectrum of the CH stretch modes. He also told me about the International Symposium on Molecular Spectroscopy (ISMS), which would have took place in Urbana-Champaign, Illinois at the end of June. Since he would go there with his entire group, he suggested that I should join them to participate and present my data there. What a great opportunity! So the place and the timing for my stay abroad was fixed, yet, I didn’t know what to expect. I was full of excitement.

Sun, bikes, and a bro

I arrived in Athens at the end of March in beautiful warm weather – spring was already underway. The weather stayed pleasant for the whole time and I never needed warm clothing. It also meant that I could easily explore the area by bike. There are several parks like the State Botanical Garden that were worth visiting.

The view on a part of the Atlanta skyline from the Piedmont Park.

I already knew one of Gary’s graduate students – Chris – whom I had met a year before at the Gordon Research Conference on Atomic and Molecular Interactions at Stonehill College near Boston. When he heard that I was looking for a place to stay, he offered me his apartment, as he had a spare room and no room mate at that time. I immediately agreed, for I knew he was a bro.

Downtown music and university sports

Athens is a college town, with a population of about 100,000. It is located in a beautiful countryside about the Oconee River. The downtown area is dominated by bars with frequent live music events. The music scene is active around there, with some popular bands like R.E.M. and B-52. Many festivals take place, like the ‘Twilight Series’, an annually occurring series of bicycle races through downtown.

A live band playing in downtown Athens.

The UGA, funded in 1785, is the oldest public university in the US and ranks high in academics and research. From Chris’ apartment I could either take the bus that is circuiting campus or ride the bike to the campus.

In most of the colleges athletics is a big deal, and teams of different universities compete regularly. The Georgia Bulldogs – this is how the athletics teams at UGA are called – are successful overall. Especially their football team receives a lot of attention. Unfortunately, since the football season takes place in fall, I could only watch a practice game once. The UGA has a center for recreational sports, the Ramsey Student Center. It is a huge building with two gyms, two swimming pools, an indoor track, training halls for many sports and a number of multi-purpose halls, even walls for climbing. The Ramsey membership for 3 months was only 40$ for students, and I was able to use all of the facilities.

Time to measure cold radicals        

Gary’s research group consisted of one postdoc and four graduate students at that time. They were using a helium droplet machine that had been running well for years already. But they were also setting up a new machine, that is able to produce large helium droplets, opening possibilities for a lot of new experiments. While the assembly was already moving towards completion, a lot of things still needed to be taken care of. Essentially only three persons including me were working with the running setup measuring radicals, a circumstance that gave me a lot of opportunities to perform experiments.

While their experimental setup is almost identical to the one I use at RUB, Gary’s lab focuses on small organic radicals, their reactions and complexes with other molecules. In Bochum on the other hand, we mainly conduct measurements on complexes of small organic molecules with a few water molecules, focusing on the microscale solvation processes.

In the first weeks we measured the hydroxy radical and some of its bimolecular complexes. Upon incorporating a brand new, homebuilt permanent magnet, we could observe the Zeeman splitting of the radical. In the process I got to know the helium cluster machine and the specifics of their setup. Finally, the bitropyl that I needed as a precursor for producing the tropyl radical, was delivered. By that time I was able to operate the machine and conduct the measurements on my own.

Science Zone

Helium droplets are used as a matrix for isolating and stabilizing small organic radicals, that are then probed by an infrared laser. Upon exciting a ro-vibrational transition the absorbed photon energy is quickly transferred to the helium, leading to evaporation of helium atoms and a decrease in the size of the droplets. This change is recorded as a depletion spectrum in a mass spectrometer.

The roller derby   

Gary’s group met up in the evenings several times during my stay, hanging out at bars in downtown, relaxing and drinking.

The Turner Field baseball stadium in Atlanta during the game.

Once, we went to Atlanta to watch a baseball game, where the Atlanta Braves beat the Cincinnati Reds. Another time, we went to watch a football practice game of the Dawgs. Also, Chris introduced me to some of his friends and we met a couple of times, brewing beer, playing frisbee, having barbecue, playing the Settlers of Catan board game or hanging out downtown after work and on weekends.

I even got to know a sport I hadn’t been aware of before: the roller derby. It is a game where two teams of girls on roller skates go around a track and one member of each team – the jammer – tries to overtake members of the opposing team and the rest of the team tries to hinder the enemy jammer. It is a dynamic game and surprisingly fun to watch.

The ISMS conference and a trip into the mountains

Finally, end of June came, it was time to attend the ISMS conference at Urbana-Champaign. Together with some colleagues of Gary’s lab we rented a university car and hit the road going north, direction Chicago. It was a 10h road trip to the conference site. . Nevertheless, the long drive was worth it, since the meeting had many interesting talks.

Several sessions on different topics took place simultaneously all the time, with mostly short talks on specific topics. There was a separate room, where you could get coffee and donuts all day – a habit that can become really unhealthy! However, there was a bowl of fruit, too, which got empty more frequently towards the end of the conference.

Snapshot during a roller derby game at The Classic Center in Athens.

I spent the last weekend of my stay in the mountain area where North Carolina borders Georgia and Tennessee, enjoying the countryside, relaxing and racing a quad bike on mountain trails. And suddenly, I was on my flight back to Germany! Looking back, the three months were over in a blink. I had learned a lot and gained some insight into a part of this huge country and its culture. All people I got to know were open and friendly, and everybody took care that I got the full American Experience.

Even though I was working on essentially the same experimental setup I am using at home, I experienced working in a different environment and a different lab as a new approach to research. I also learned a lot more about the helium droplet technique, by getting to know different ways to deal with experimental challenges. I am grateful that I got this opportunity and I want to thank Gary for making my stay possible in the first place and Chris, who made sure that it was always great.

The Douberly Lab including me at the conference in Urbana-Champaign.                                    From right to left: Joe, Gary, Chris, Peter, Alaina, Bernadette and I.

About the Author

portraitMatin Kaufmann, born in 1986, has studied Physics at the Universität Vaihingen in Stuttgart, obtaining his diploma in 2012. Since 2013, he is part of the spectroscopy group at the Lehrstuhl für Physikalische Chemie II under Prof. Dr. Martina Havenith, and investigates small complexes of glycine with water, isolated in helium droplets using infrared spectroscopy. He completed his internship at the University of Georgia within the framework of the Graduate School Solvation Science (GSS).