Solvation science into focus at historic Solvay conference.

Three members of the Cluster of Excellence RESOLV attended last October the renowned Solvay-Conference on Chemistry in Brussel, an event open to invited scientists only. Prof. Dr. Martina Havenith, speaker of RESOLV at RUB, Prof. Dr. Frank Neese, director at the Max-Planck-Institute for Energy Conversion, and Prof. Dr. Benjamin List, director at the Max-Planck-Institute for Coal Research, both based in Mülheim an der Ruhr, were among the fifty attendees.

solvay_conference_group_photo

2016 Solvay Conference group picture ©InternationalSolvayInstitutes

Belgian chemist and industrialist Ernest Solvay, the founder of the chemical company Solvay S.A., initiated the first series of international conferences on physics in 1911, while the first meeting on chemistry occurred in 1922. Since then the Solvay-Conferences on Chemistry and Physics had been held every three years. The conferences have become extremely famous after the 1927 physics meeting on ´Electrons and Photons´, when Albert Einstein and Niels Bohr, among others, met to discuss the newly forged quantum theory.

The 2016 meeting evolved around the theme ‘Catalysis in Chemistry and Biology’. We briefly interviewed Havenith, List and Neese about their experience in Brussels.

 

What was your impression of the conference?

martina_havenith_newen

Discussing at the 2016 Solvay Conference ©InternationalSolvayInstitutes

Martina Havenith: It was very impressive for many different reasons. First of all, it’s rare to see five Nobel prize winners together! – and it’s even rarer that they are listening to your ideas and discussing the future direction of chemistry. Besides, it was an intimate meeting, and we had much more time than usual for discussions. It was also remarkable to witness the special engagement of an industrial family into science. And it was impressive to read the names of Albert Einstein and Marie Curie in a guestbook!

Benjamin List:  One of the best conferences I have ever attended!

Frank Neese: The conference was unlike any other I have ever attended. There obviously is an impressive history associated with Solvay conferences and it was a major honor to be invited to participate. It takes place in a fairly unique setting in a beautiful historic hotel in Brussels with a closed circle of only invited international speakers and an outstanding accompanying program. The format is also different from usual: The talks are just ten minutes long and the discussion takes first place among the members of the session, only later it involves the other guests.

 

What was the take-home message? How was solvation science portrayed?

Martina Havenith: This meeting focused on the main challenges in catalysis. It was not about the details of the field but it rather provided a big picture of what we have learned in the past and what is still unclear. Most interesting for RESOLV: In the end it was noted that the solvent has not yet been taken much into consideration, but in the future we should have a closer look into it and its important role in catalysis.

benjamin_list2

Session begins at the 2016 Solvay Conference ©InternationalSolvayInstitutes

Benjamin List: I was able to identify three unifying principles of catalysis – including heterogeneous, homogenous organic and metal catalysis, and biocatalysis: 1. Turnover frequency (an index of a catalyst’s activity: The larger the frequency, the more active the catalyst); 2. Confinement (a well-defined and confined local environment of a catalyst’s active site); and 3. Solvation! Everybody in the field is aware of the unique relevance of solvation to catalysis – understanding this defines one of the grand challenges of the field.

Frank Neese: It became very evident that an open dialogue among the various disciplines of catalysis, in particular homogeneous and heterogeneous catalysis, is really needed. At the end of the day, the problems are the same (what are the intermediates? How is selectivity controlled? How is the energy loss minimized?). Yet vocabulary, cultures and challenges of the various disciplines are vastly different, hence there hardly can be any 1:1 transfer from one field to the other. However, it was interesting to see how biochemists have achieved the most detailed understanding of individual reaction mechanisms in biological catalysis. That’s partially because they are willing to devote their entire career to study few reaction mechanisms and to involve experts from neighbouring disciplines in the endavour. Clearly, quantum chemistry has evolved as a very powerful partner of experiment and it’s becoming a universal tool for catalysis research as a whole.


About the author

EF3Emiliano Feresin is a science journalist, currently responsible for the outreach activities within the RESOLV cluster at RUB. Born and raised in Italy, he holds a Diploma and a PhD degree in chemistry. Driven by an innate curiosity for scientific stories, he completed his education with a master degree in science communication. Along the path he has written for outlets like Nature and Chemistry World and learned that the reader has always the last word.

 

 

The Host*: Developing new tools to engage next generations with science

The topics of scientific inquiry and nature of science are the major foci of our work in the Department of Mathematics and Science Education at Illinois Institute of Technology (IIT) in Chicago.

Sue_at_Field_Museum

Sue, the largest, most complete Tyrannosaurus rex (85%) ever discovered, at Chicago’s Field Museum of Natural History © Shoffman11

For example, we worked on the High School Transformation Project (HSTP). HSTP was dedicated to changing the way science is taught at 23 Chicago high schools. We designed curricula in biology, chemistry, and physics that enhance foundational science knowledge, inquiry skills and knowledge, and nature of science through authentic and relevant learning experiences.

For example, in a class lesson designed to learn atomic structure, students had to follow various learning steps: Read the related book chapter; answer questions like “What are living things made up of?” and “What are elements made of?”; work hands on with true objects (in this case beans, peas and strings) to represent the atomic structure, and so on.

To ensure the success of the HSTP program, we provided each participating teacher with continuous and intensive support including on-site, expert, experienced instructional coaches, science faculty and graduate students. There were weekly networking meetings for all teachers. Scientists and educators from IIT and the Field Museum provided monthly professional development. Materials and activities were designed to specifically connect with each school’s diverse cultures and community interests.


Internship zone

I hosted Christian Strippel from the Chemistry Education group at Ruhr-University Bochum for his RESOLV internship in two stints: Fall 2014 and Spring 2016. During his first stay at Illinois Institute of Technology (IIT), we discussed preliminary ideas on the RESOLV exhibition and it was exciting to see how these ideas turned into the exhibition “Völlig losgelöst”. We also worked with Christian on a paper about research on teachers’ implementation of scientific inquiry in German Chemistry classrooms, which was recently published in the International Journal of Science Education.

IMG-20141008-WA0007

Business dinner for young researchers at Peggy Notebart Nature Museum © Christian Strippel


Currently at IIT, we are conducting an international study on seventh grade students’ views about scientific inquiry. Science education researchers have been so far disappointed at what students learn about inquiry in schools, but this has been a feeling mainly based on perception. In fact, until recently, there has never been a comprehensive valid and reliable assessment of students’ understandings of inquiry. The Views About Scientific Inquiry (VASI) was developed at IIT and we are now working with researchers all over the world (i.e., 18 countries) to get a baseline assessment of what seventh grade students understand about inquiry. This will lead to a better idea of how we can engage the next generation with the practices and processes of science – be it as future scientists or as citizens in a global society influenced by science and research.

*The host is a new series of blog posts, revealing the perspective and the work of the scientist hosting RESOLV students for an internship.  


About the author

Lederman

Norman G. Lederman is Distinguished Professor of Mathematics and Science Education at the Illinois Institute of Technology. He has a Ph.D. in Science Education from Syracuse University (1983); M.S. in Secondary Education from Bradley University (1977); M.S. in Biology from New York University (1973); B.S. in Biology from Bradley University (1971). He is internationally known for his work on students’ and teachers’ understandings of nature of science and scientific inquiry.