„That’s funny …“ – teenagers living one day in the life of a scientist

Isaac Asimov supposedly once said “The most exciting phrase to hear in science, the one that heralds new discoveries, is not ‘Eureka’ but ‘That’s funny…’”. Indeed, many scientists have experienced this notion that something in their data is so puzzling, so difficult to explain that they desperately want to find out more about it.

IMG_3787

Instructions ©Alfried Krupp-Schülerlabor

This is also the spirit of exploration that we at the RUB Chair for Chemistry Education hope to install in future scientists. And this is the aim of the one-day project “High Resolution – focus on research” that runs since 2015, in cooperation with RESOLV, at the Alfried Krupp School Laboratory. There, students should think and discuss about methods and challenges of scientific inquiry, experience them first hand and also look over the shoulder of real scientists. These are high expectations, but how does the project work in practice?

One day in high resolution…

IMG_3806_b

On the lab bench ©Alfried Krupp-Schülerlabor

Students – usually a class of 14 to 16 year-olds – and teachers arrive at the Alfried Krupp School Laboratory at 9 am. They are welcomed by a member of the science education staff. First of all, they get an introductory example on the early stages of systematic science – 18th century Joseph Priestley’s research on air. The gap to the 21st century is bridged when the students discuss how Priestley would present his findings today. Then they are introduced to JoVE, the Journal of Visualized Experiments, where real scientists publish their papers as videos. The big take-away from this introduction is that scientific inquiry is not only about finding things out, it is also about communicating your inquiry to other people. With this in mind, the students enter the laboratory at 10 am. They learn about the methods and the aims of scientific inquiry.

IMG_3780

Time to measure ©Alfried Krupp-Schülerlabor

They get training in using chemiluminiscence and microscopy to investigate cells. They then develop their own research questions about various plants, they carry out their investigations and have to come up with their own conclusions. Most importantly, once they found something interesting, students are asked to shoot and edit a video on their inquiry using tablet computers. Just before lunch, the final take and cut have to be done.

After lunch, the students enter one of the RESOLV laboratories. They visit the group of Jun.-Prof. Simon Ebbinghaus, who investigates protein aggregation using fluorescence microscopy. Usually, one PhD student in Ebbinghaus group presents his/her research on protein aggregation in model cells, and introduces the students to the fluorescence microscope and how to operate it manually and via computer. Most importantly, teenagers get a chance to ask questions concerning science, how to become a scientist and life in academia.

At the end of the day, the students return to the Alfried Krupp School Laboratory.

“That’s funny”…students get to know the puzzling of science under the guidance of Dr. Magdalena Groß ©Alfried Krupp-Schülerlabor

They watch and evaluate their movies, trying to make a fair and honest judgement whether they have performed and presented convincing inquiries. It turns out that many would have wanted to be more rigorous. But they all agree that theirs was only a first step on the long and winding road to becoming a scientist. Hopefully, they’ll remember that day, when they look through an ocular at something puzzling and thought: “That’s funny…”.

Work in progress

The school laboratory project has been offered, booked and evaluated since the beginning of 2015. So far, eight groups with about 170 students have participated in the project. Students from regional and national schools as well as high-achieving students (“Chemie-Olympiade”, “Biologie-Olympiade”) have taken part in the initiative. We continuously evaluate the program by asking participating students, teachers and science educators for their opinions. The students particularly like the opportunity to carry out their own inquiries, they enjoy making videos about their experiments and they highly value the chance to see and talk to a real scientist. The project will continue to change if necessary as the main priority remains to keep the focus on research.

Additional material and publications

Braun, S., Strippel, C. G., Sommer, K. (2016). Naturwissenschaftliche Erkenntnisgewinnung in Schüler-Videos. Proceedings of the Gesellschaft für Didaktik der Chemie und Physik. Berlin: Lit Verlag.

Strippel, C. G., Tomala, L., & Sommer, K. (accepted). Klappe, die Erste! – Schüler produzieren eigene Experimentiervideos. Mathematisch-Naturwissenschaftlicher Unterricht.


About the authors

@ RUB, Foto: Nelle

@ RUB, Foto: Nelle

Christian Strippel was born 1988 in Bochum and holds a M.Ed. in Chemistry and English. His (scientific) motto of life is: “Fortune favours the prepared mind.” – Louis Pasteur
He studied in Cambridge (UK) for one year and holds a Postgraduate Certificate of Education (Chemistry, University of Cambridge). Currently, he works on his Ph.D. project “Communication about scientific inquiry during experimentation”.

 

Prof Dr Katrin Sommer © RUB, Marquard zu nennen.

© RUB, Marquard

Katrin Sommer is Professor of Chemistry Education at the Ruhr-University since 2004. She is also head of the Alfried Krupp-School Laboratory since 2012. She has a 1. Staatsexamen in Chemistry and Biology from Leipzig University (1995), a 2. Staatsexamen (1997) and a PhD in Chemistry Education from Nuremberg-Erlangen University (2000). She was recently presented with the Award from the German Polytechnik Society for the parent-child-project KEMIE.

 

The Host*: Developing new tools to engage next generations with science

The topics of scientific inquiry and nature of science are the major foci of our work in the Department of Mathematics and Science Education at Illinois Institute of Technology (IIT) in Chicago.

Sue_at_Field_Museum

Sue, the largest, most complete Tyrannosaurus rex (85%) ever discovered, at Chicago’s Field Museum of Natural History © Shoffman11

For example, we worked on the High School Transformation Project (HSTP). HSTP was dedicated to changing the way science is taught at 23 Chicago high schools. We designed curricula in biology, chemistry, and physics that enhance foundational science knowledge, inquiry skills and knowledge, and nature of science through authentic and relevant learning experiences.

For example, in a class lesson designed to learn atomic structure, students had to follow various learning steps: Read the related book chapter; answer questions like “What are living things made up of?” and “What are elements made of?”; work hands on with true objects (in this case beans, peas and strings) to represent the atomic structure, and so on.

To ensure the success of the HSTP program, we provided each participating teacher with continuous and intensive support including on-site, expert, experienced instructional coaches, science faculty and graduate students. There were weekly networking meetings for all teachers. Scientists and educators from IIT and the Field Museum provided monthly professional development. Materials and activities were designed to specifically connect with each school’s diverse cultures and community interests.


Internship zone

I hosted Christian Strippel from the Chemistry Education group at Ruhr-University Bochum for his RESOLV internship in two stints: Fall 2014 and Spring 2016. During his first stay at Illinois Institute of Technology (IIT), we discussed preliminary ideas on the RESOLV exhibition and it was exciting to see how these ideas turned into the exhibition “Völlig losgelöst”. We also worked with Christian on a paper about research on teachers’ implementation of scientific inquiry in German Chemistry classrooms, which was recently published in the International Journal of Science Education.

IMG-20141008-WA0007

Business dinner for young researchers at Peggy Notebart Nature Museum © Christian Strippel


Currently at IIT, we are conducting an international study on seventh grade students’ views about scientific inquiry. Science education researchers have been so far disappointed at what students learn about inquiry in schools, but this has been a feeling mainly based on perception. In fact, until recently, there has never been a comprehensive valid and reliable assessment of students’ understandings of inquiry. The Views About Scientific Inquiry (VASI) was developed at IIT and we are now working with researchers all over the world (i.e., 18 countries) to get a baseline assessment of what seventh grade students understand about inquiry. This will lead to a better idea of how we can engage the next generation with the practices and processes of science – be it as future scientists or as citizens in a global society influenced by science and research.

*The host is a new series of blog posts, revealing the perspective and the work of the scientist hosting RESOLV students for an internship.  


About the author

Lederman

Norman G. Lederman is Distinguished Professor of Mathematics and Science Education at the Illinois Institute of Technology. He has a Ph.D. in Science Education from Syracuse University (1983); M.S. in Secondary Education from Bradley University (1977); M.S. in Biology from New York University (1973); B.S. in Biology from Bradley University (1971). He is internationally known for his work on students’ and teachers’ understandings of nature of science and scientific inquiry.